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ABSTRACT / --

This paper presents a discussion of the application of

data-flow machine concepts to the design and implementation of
database machines which execute relational alnebra queries. TAle

analyze the performance of multiprocessor nested-loops and sort-
merge join algorithms and show that the nested-loops aloorithm is
generally superior. Three levels of operand qranularity for
data-flow database machines are introduced and compared usino the
nested-loops join algorithm. We demonstrate, that relation-level
granularity is too coarse and that tuple-level granularity is too
fine. The third level of granularity, a page of a relation, is
shown to he the best choice from both hardware and software
viewpoints. Finally a preliminary desin for a data-flow data-
base machine which utilizes page-level granularity and supports
distributed control of instruction execution is presented.
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SIGNIFICANCE AND EXPLANATION

A preliminary architecture of a database mAchine is

TDresente 9I. This architecture uses the presence of data as
the criterion for instruction initiation An(9 control rather
than the instruction's nosition in the prooram. quch a
machine is known as a d9Ata-flow machine. The use of data-
flow techrnues in daptabase machines has been shown to he

oromisina elsewhere. towever, to this cdate no architecture
usinn~ these techniques has been clesiqned. The architecture

p~resentedI is only a preliminary one and will most likely
underao a number of future chanaes.
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DESIGN CONSIDERATIO FOR DATA-MLOW DATABASE MACHINES

Haran Boral and David J. DeWitt

1. Introduction

Durinq the past several years we have been investiqatinq the

design and implementation of multiprocessor database machines for

the execution of relational algebra queries. In [1,2] the archi-

tecture of DIRECT, a MIMD) database machine, is described. The

problem of relation fragmentation and its impact on query execu-

tion time is discussed in [3]. In [4], four processor assignment

strateies for MIMD database machines are described and

evaluated. One of the primary results presented in [4] is that

the application of data-flow machine techniques to the processing

of relational algebra queries siqnificantly enhances system per-

formance. The architecture of DIRECT [1,2] is that of a data-flow

machine where all the control functions are centralized. In this

paper we intend to present an approach to constructing a data-

flow database machine which supports distributed control.

In Section 2.0, we introduce the basic concepts of query

processing usino multiple processors and data-flow machines. We

analyze the performance of multiprocessor nested-loops and sort-

merge join algorithms and show that the nested-loops alqorithm is

qenerally superior. In Section 3.0, three levels of operand

granularity for data-flow database machines are introduced nd

compared. We demonstrate, that relation-level aranularity is too

coarse and that tuple-level granularity is too fine. The third

level of granularity, a page of a relation, is shown to be the

best choice from both hardware and software viewpoints. Section

4.0 contains a preliminary design for a data-flow database

machine which supports page-level qranularity. Our conclusions

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and
No. DAAG29-79-C-0165 and the National Science Foundation under Grant MCS78-01721.
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and areas of future research are presented in Section 5.0.

2. Backqround

2.1. Relational Ouery Processinq

Each relational alqehra query is qenerally comprised of one

or more relational alqebra operations (instructions) and is

oraanized in the form of a tree. Each node, represents an opera-

tion to be performed on a number of relations. Some examples are

restrict, join, append, and delete. Modes hiaher up in the tree

operate on relations produced by nodes below them. Fiqure 2.1

contains an example of a typical relational algebra query in the

form of a query tree.

2.1.1. Parallel Join Algorithms

In a relational database system one of the most time consum-

inq operations that must be performed is the join operator. In

£51, several alternative join aloorithms for uniprocessor systems

are presented and analyzed. The results show that in the absence

of indices (as in DIRECT) a sort-merqe alqorithm performs best.

However, for multiprocessor systems we feel that the performance

of the nested-loops alqorithm is superior to that of the sort-

merge alqorithm. To support this claim we present some intuitive

arguments followed by a short, informal analysis of both alao-

rithms.

The multiprocessor sort-merqe alqorithm employs a parallel

sort of both relations on the joininq attribute. This is fol-

lowed by a uniprocessor merqe on the joininq attribute to perform

M kf." , . . II| -. . ....
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the join. Our parallel sort uses a binary tree arrangement of

processors as in [6].

The multiprocessor nested-loops algorithm works by joinina

each unit of one (the outer) relation with all of the units in

the other (the inner) relation. If a unit corresponds to a paqe,

the outer relation is n pages long, and there are n processors

available, then each processor can join one paqe of the outer

relation with the entire inner relation. A unit can also he a

tuple.

we assume that each page of both relations is sorted and

that a merge algorithm is used by the multiprocessor sort-merge

algorithm to sort two pages and by the multiprocessor nested-

loops algorithm to join two pages. Therefore, the time requireO

for a processor to process two input paqes is the same for both

algorithms and can be disregarded in the following comparison of

the two alqorithms. Finally, for the sorting analysis we have

made a number of simplifying assumptions. The most significant is

that after each stage all the processors flush their buffers.

Although optimizations will improve the total execution time the

improvement will not be significant. T)isregardinq optimizations

makes the analysis easier.

Intuitively the nested-loops algorithm should outperform the

sort-merqe since the amount of parallelism that can he attained

is high (limited only by the number of paqes in the outer rela-

tion) and can be maintained throuqhout the duration of the execu-

tion. When sorting in parallel one may he able to start with a

large number of processors but after each stage the number of
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processors decreases whereas the amount of data examined by each

processor increases until in the final stage one processor must

examine the relation in its entirety.

A second consideration that is not immediately apparent is

that of cache memory usage. In order for the parallel sort to

execute optimally the complete relation must be kept in the cache

for the duration of the sort. In the case of a nested-loons

join, only a portion of the inner relation must be kept in the

cache for the duration of the operation (since once a page of the

inner relation has been seen by all the processors that page

frame can be used for another page of that relation).

The following informal analysis verifies our intuitive arou-

ments about the relative performance of the two algorithms. We

assume that the two relations to be joined contain n and m pages

anA that n > m. We also assume that there are p processors,

lp<n, available to perform the join and each processor has a 3

page internal buffer: 2 for input and 1 for output. To simplify

the analysis we have also assumed that P,m,n are all powers of 2.

For the multiprocessor nested-loops algorithm, the execution

time of the join, tnestdlo, is equal to n/p*(l+m). Rach of

the p processors will each join n/p pages of the outer relation

with all m pages of the inner relation. Thus each of the proces-

sors will read 1 page of the outer relation followed by m pages

of the inner relation. This will occur n/p times.

For the multiprocessor sort-merqe algorithm, the execution

time of the join, tsort-merqe, is equal to tsort (outer) +

t (inner) + t mere, where t = n + m. The sort time for
sort merge "ira
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each relation, tsort equals tsuboptimal + t optimal where

(*) tsuptimal = 2n/p*[lJoc 2 (n/2p)+l1

(**) toptima1 = 4n-2n/p.

The derivation of (*) follows. At each suboptimal level the p

processors do the same amount of work: 2n/p I/O operations (n/p

reads and n/p writes). At level i, i>0, each processor sees 2

runs" whose lenoth is 2 panes ;nd produces one run whose

length is 2i panes. The first optimal level is that level whose

input runs are each of lenoth n/2p (thus each of the p processors

inputs exactly n/p panes). This is level number log 2 (n/2p)+l.

Since we start counting levels from 0 there Pre loq 2 (n/2p)+l

suboptimal levels.

To derive (**) we note that in each level we do twice as

much work as in the precedin level. hWe start with n/p reads and

n/p writes by each processor. There are ]on 2 (2p) optimal levels.

Thus tota is the sum of the loq 2 (2p) terms 2n/p, 4n/p,...,2n.

This sum simplifies to An-2n/p.

Our two final formulas are then:

tnested-loops = n/p*(1+m), and

tsort-merqe = 2n/p* [loq 2 (n/2p)+l]+4n-2n/p

+ 2m/p*[loq 2 (m/2p)+l1+4m-2m/p

+ n+m

= 2n/p*loq 2 (n/2p)+2m/p*looa2 (m/2p)+Tn+5m

It is clear that as p approaches n, the nested-loops alao-

rithm outoerforms the sort-merqe. For very small values of p

(relative to n) the opposite is true. This is as expected since

the uniprocessor sort-merae Aloorithm has nloqn complexity while
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the nest-loops alqorithm has n2 complexity. Figures 2.2-2.4

present the results of the behavior of the two algorithms for

three different joins. 'Ale see that the nested-loops alqorithm

generally outperforms the sort-mere alqorithm when the number of

processors executina the join is a fairly small fraction of the

"optimal" numher of processors for the nested-loops aloorithm

(i.e. the number of pages in the larer/outer relation). Tt

should also be noted that at ontimal levels the nested-loops

algorithm outperforms the qort-merae according to the ratio

2.1.2. Parallel lUpdate Operations

The followinn alqorithms are employed by nTRErT for the

three update operators aDnend, delete, and renlace. Deletes are

implemented as negated restricts. To nerform an anpend we exe-

cute a variation of a merne. W'e assume that all paqes are sorted

on either the key or the entire tunle. The tunles to he appended

are placed in as few pages as possible in a sorted order. Fach

processor executinq the append is niven a pane of the orioinal

relation and in turn all the new nages. The processor examines

both pages and upon findinq a duplicate tuple it deletes the

tuple from the old paqe. Finally the new paoes are added to the

relation page table. Replace is implemented as a modified delete

followed by an anpend. In each case the raqes of the result

relation remain sorted. Fach relation must undergo a periodic

reorganization if pages become too sparse.
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2.2. Data-flow Machines

A data-flow machine is an architecture devoid of a proqram

counter where instructions are enabled for execution as soon as

their operands are present. Such a machine consists of a memory

section, a processinq section, and an interconnection device

between the two sections. A memory cell contains an instruction

and room for the operand data. As soon as all the required data

is present, the contents of the cell are sent to some processor

for execution. This frees the cell for the execution of the next

instruction. Output from the processor is sent via the intercon-

nection device to one or more memory cells, possibly enablinq one

or more instruction(s) in the destination cell(s).

Various architectures for data-flow machines have been Pro-

posed [7-11. These architectures differ from each other in many

ways. One difference is the granularity of the operands and the

types of operations that the processors execute. For example,

r)ennis [7] talks about assiqninq such instructions as add and

multiply to the processors whereas Arvind [81 and Rumbaugh [101

assiqn entire procedures to processors.

For data-flow database machines there are also several

alternative variable qranularities for enablinq relational alqe-

bra operators in the query tree. That is, the basic variahle

used for schedulinq decisions can he a whole relation, a fraoment

of a relation, or a sinqle tuple. In Section 3.0, we will

describe and then contrast each of the these aranularities.

In order to illustrate our ideas we chose to use the MI'

machine [71 as a model since it is easy to understand and



10

descrihe, Furthermore we feel that although the model differs

siqnificantly from others the basic results remain unchanqed.

The machine orqanization of Fioure 2.5 depicts the model

described in [7]. Although later, more sonhisticated, variations

have been described in the literature [11] we feel that they do

not conceptually differ from the original.

Tn the machine of Fiqure 2.5 the interconnection mechanism

is divided into two sections. The arbitration network provides a

path from every memory cell to every processor. Enabled cells

travel through it to processors for execution. Result packets

are sent from the processors throuqh the distribution network to

the memory.

2.3. Relational nuery Processinq in Data-Flow Machines

WA e assume that the instruction in each memory cell

corresponds to a node in the query tree and that the data is

represented by paqe tables, pointinn to paqes either in a mass-

storage cache or on mass storaae. Thus a relation can also be

thouqht of as a stream ril1 of paoes. In order to simplify our

discussion we assume that at the time that a memory cell fires,

the associated data paaes are retrieved from a mass-storaoe cache

and placed, together with the control information, on the arbi-

tration network. qimilarly, the distribution network places oult-

put Parles in the mass-storAne cache and updates the paoe tahles

in the tAriet cells.

The nrocessino of riueries in ni dta-]ow shion is related

to the idea of nrncessini relational queries in a pipelined
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fashion which has been previously suqqesteO by qmith ani nhanq

[121 and Yao [131. There are, however, several imnortant differ-

ences between the two approaches. In the pipelined approach,

there will he at most one processor executinn each node in the

tree and therefore the concurrency obtained will be limited by

the number of nodes in the query tree. In the datA-flow approach

we can have any number of processors executinq each node and can

dynamically adjust which processors are executina which nodes in

the query tree in order to maximize performance. The other major

difference is that in the data-flow approach we never need to

wait for one node to completely finish before initiatint the sub-

sequent operator as has been suqqested is necessary for ninelin-

inq [131.

3. Three nDerand (ranularities for Data-flow Ouerv Processinn

3.1. Relation-level Granularity

The coarsest possible qranularity for enablinq instructions

is the relation. That is, a node in the query tree is enable(

for execution only when its source operands have been compJletelv

computed. Clearlv, if the query is in a tree formpt, all iepF

nodes are immediately executable. A node hiriher up in th- auerv

tree is enahled whenever all of its Oeserndpnts have finisho

executinn.

3.2. Paqe-levP1 rrarularitv

In this approach A naoe of A reo=tion is ticp,' for scb)ePAMr-

decisions. This means that an onprpanr can be initipteA -s
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as at least one page of each participatinq relation exists.

Assigning processors to operate on Paqes rather than relations

makes it possible to cut down on page traffic between the data-

flow machine memory and the mass storaqe device(s) by distrihut-

inq processors across all nodes of the tree and nipelinina Daoes

of intermediate relations between them.

In order to evaluate data-flow auery processina which

employs relation-level qranularity with paqe-level granularitv

detailed simulation of D)IRECT was implemented (41. While this

simulation measures the performance of each data-flow strateqv on

a multiDrocessor orqanization [I,21 which is not a true data-flow

machine (i.e. it has centralized control), we feel that similar

results would be obtained if the strateqies were tested on a

machine with more decentralized control organization.

The followinq assumptions were made:

- 14K byte operands for instruction packets

- LSI-I1s as processors (can rear a 1.W byte oage in

33ms)

- The data cache is constructed from Intel 2314 CCn chins

- Two IRM 3330 disk drives for mass storaqe of relAtions

- A cross-bar switch with broadcast capabilities is use(

to connect the processors with the Hata cache. The

cross-bar switch is a feature of nIRECT, not data-flow

r)EIFCT.

In III a description of the exneriments and resuIts is

nresented. Piqure 3.1 shows the results of the simulation ror P

representative benchmark containina ten oueries (2 nueries with I
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restrict operator only, 3 queries with 1 join and 2 restricts

each, 2 queries with 2 joins and 3 restricts each, 1 auerv with 3

joins and 4 restricts, 1 query with A joins and 4 restricts, and

1 query with q joins and r restricts), a relational database con-

taininq 15 relations with a combined size of 5.9 megabytes, and

two CCD cache paqe frames for each processor. As illustrated by

this experiment the Paqe-level oranuiaritv outperforms

relational-level qranularity by a factor of about two to one (The

interested reader is referred to [41 for results for different

query mixes). These results seem to verify the benefits of pipe-

lininq paaes of relations up the ouery tree in order to minimize

movement of data hetween a shared niata cache and secondary

memory.

3.3. Tuple-level Granularity

In this approach a tuple of a relation is the basic unit

which is user' for schedulinq decisions. This means that an

operator can be initiated as soon as at least one tuple of each

participatinq relation exists. As with pa(e-]evel nranularitv,

this granularity also offers the nossihijity of pinelininn tunles

of intermediate relations between nodes in the auerv tree. 9ow-

ever, this qranu~arity Places unnecessarily hu h handwi~th

requirements on the arhitration network as will he demonstrated

below.

Wthen the nested-loops join aloorithm is aonlied with tunle-

level irant11aritv, each tun]e of the outer relation will 'e

joined with every tunle of the inner relation. Let the outer
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relation be A and the inner relation be B. Assume that the

number of tuples in A is n and the number of tuples in P is M.

Furthermore, assume that each tuple in A and P is 100 bvtes lono

and that c represents the number of overhead bytes associated

with each instruction that passes through the arbitration net-

work. To execute the join, n*m*(200+c) bytes will have to nass

from the memory through the arbitration network to the processinn

section.

Mext consider the bandwidth requirements if this same exam-

ple is executed using page-level granularity. Assume that each

page is 1000 bytes lonq. Therefore, relation A occupies n/l0

pages and relation B occupies m/10 paqes. Thus n*m*(20 + c/l)

bytes must pass through the arbitration network. Even if one

ignores the overhead of sending a packet (which is probably the

same for Both qranularities), the bandwidth requirements of the

page approach is 1/10 that of the tuple level apnroach.

While increasing the page size to 10,000 bytes will ohvi-

ously decrease the arbitration network bandwidth requirements by

another order of magnitude, such an increase may have an adverse

effect on query execution time because it mav reduce the denree

of concurrency which is nossihle. Tf the number of nrocessors

available for auery execution is apnroximately eaual to n * m,

tuple-level aranularitv is optimal. We feel that this is unlikelv

as typically the value of n * m will he in the millions. There-

fore for typical queries (unless there are millions of nroces-

sors), tuple-level granularity places An unnecessary hurden on

the arbitration network without An apparent increase i
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performance. By sendinq paqes of relations to the processors, a

similar dearee of concurrency can be achieved while minimizinri

network traffic.

4. A Preliminary Architecture for a Data-flow Database Machine

'hile the architecture of the MIT machine could be used as

the basis of a data-flow database machine, we have identified

several properties which for a database machine will unneces-

sarily limit its functionality and increase its complexity. The

MIT machine [71 is designed to permit the simultaneous execution

of the instructions from only one program (or one query). This

clearly is very restrictive for a multiuser, datahase manaqement

system environment.

Furthermore, we feel that for a database machine the same

level of performance can be achieved with an entirely different

design for the arbitration and Histribution networks. These net-

works are responsible for instruction initiation and data distri-

bution. The desiqn of the data distribution network is rela-

tively straiqhtforward. Its function is to take a result packet

produced by a processor and store it in those instruction cells

which are specified in the packet header. The arbitration net-

work, on the other hand, is very complex. It must continuously

monitor all instruction cells anO nrovioe a mechanism for ini-

tiating several enabled instructions simultaneously by routina

the contents of each enabled instruction to a free orocessor for

execution. 'Ple feel that for data-flow database machines these

two networks are too oeneral ourpose and conseciuentlv excessively
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expensive.

In our approach the instruction memory and the arbitration

and distribution networks are replaced with a small number of

relatively low-performance processors. Each processor will he

responsible for controlling the execution of a few (perhaps only

one) relational alaehra onerations. Thus control of the execu-

tion of a guery is distrihuteH amonq a set of processors. 'hen

an instruction controller (I() is qiven a relational algebra

operation to control it is also given an initial allocation of

processors (called instruction processors - It's) for executing

the instruction. If a typical auery contains five operations,

then fifty ITs can maintain a multiproqrammina level o f at least

ten in the database machine.

Our approach appears to he viable for two reasons: program

size (number of instructions) and execution time of a typical

instruction. One freauently mentioned appl.cation [7] for data-

flow machines is large scientific programs (e.o. weather oro-

grams). These proqrams aenerally consist of thousands of

instructions each of which takes only a few microseconds (or

less) to execute. Even if the instruction onerates on onerands

of type vector, multiple processors can he used to work on indi-

vidual elements and hence instruction execution time will still

be in the microsecond range. For these applications P large

instruction memory is reqiuired to hold the entire program. Since

each instruction cell has one input to the arhitration network,

the size nF the arhitration network is Pronortional to that of

-h- instruction memory. The arbitration and distribution
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networks must also he extremely fast. For example, if 100 one

microsecond (execution time of a typical instruction) processinq

elements are to he kept busy, the arbitration network must be

capable of routinq 108 packets/second.

Relational algebra aueries, on the other hand, are composed

of relatively few instructions (typically 1-10 operations) each

of which takes a relatively long time to execute (in the mil-

lisecond to second range). Also packets oriqinatino from one IC

are sent to a fixed subset of instruction processors, as, for

example, are the inner relation paqes in the join. This permits

us to replace the instruction memory and the two networks with a

set of processors without any loss of performance or functional-

ity.

4.1. Hardware Orqanization and General operation

In this section we present one possihle Oesion for a data-

flow database machine. Our purpose in studyinq this architecture

is to enable us to learn more about problems associated with

data-flow database machines. This rinq-based orqPnization is of

course limiteO by the communication medium bandwidth. However,

it will later be shown that bandwidth requirements placed on the

ring for a fairly larqe configuration are not unreasonable. The

organization contains six major components:

1) The master controller (M).

2) A set of instruction controllers (IC).

3) A communications rina (inner rino) which connects the

"aster controller with the instruction controllers.
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4) A mass storaqe system with a multiport disk cache.

5) A set of instruction processors (IP).

6) A communications.rinq (outer rinq) which connects the

instruction processors with the instruction controllers.

The MC serves a number of functions. The first is to handle

communications with the host processor. W^hen a user's ouery (in

the form of a query tree) is receiveO by the MC it is placed in P

queue of queries awaitinq execution. W Then system resources (TCs

and IPs) become available, the MC removes the next auerv from the

queue, checks it for concurrency conflicts with other executinn

queries, and then distributes a subset of the instructions from

the query to a set of instruction controllers. The other func-

tions of the mC are to control utilization of the disk cache

amona the ICs and to control IP allocation.

Each IC is responsible for controllinq one or more instruc-

tions. Controllinq an instruction involves first acouirina a set

of IPs from the MC and then distrihutinq instruction packets (sep

Section 4.2) to the allocatee IPs. Thus the ICs compete with

each other for the processors in the IP pool. The MC is resnnn-

sible for arbitration of the reouests in a manner which maximizec

system performance by insurinq that processors are distrihuted

across all nodes in a auery tree.

Fach IC has a local memory for naces Of source relations

which will be used as operands in the instruction Packets it Cis-

tributes to the IPs. When the ncal memory of an ir" fills, the

IC will write the least desirable rnpes to the nultioort disk

cache. One possible approach for controllinq usaqe of the Aisk
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cache is to divide it amona the ITcs accordino to the number of

IPs each is controilina. .'.hen an I fills its seqment of the

disk cache, paqes will be swapped out to disk. Thus, the IC

local memory, the disk cache, and the mass storaqe devices form a

three-level storaqe hierarchy.

IPs are responsible for executino instruction packets which

are placed on the outer rinq by the TCs. When an IP receives an

instruction packet addressed to it, it performs the operation

specified in the Packet )d then produces an output packet. The

IP then places the output packet on the outer rinq and sends it

to the IC which is responsible for controllinq the subseauent

operation in the query tree. Thus, the IPs and the outer rinq

form a distributed distribution network for result packets.

The inner rina, as has been discussed above, is used

exclusively for distribution of instructions and other control

messaaes by the MC. since the messanes reatiired for such activi-

ties are small and limited in number, a bandwirlth of 1-2 million

bits per second (mbps) should he sufficient.

The outer rino, on the other hand, is use' for distribution

of instructions and result packets by the ICs and IPs. Fio-nre

4.2 represents the bandwidth requirements of rIRFCT [41 with

paqe-level pranu1aritv for the test data described in qection

3.2. The bandwidth for each of the different processor levels

was obtained by div!Aino the total numher of bvtes transferred bv

the execution time of the benchmark contininr ten queries.

Thus, the handwidth vi.ieno represent ayerane values an9 not neak

load values. (The handw ith renuirement for 70 processors



23

x'o 6

10

9

8

7

6

5

0

C/)

wj 4

3

2

1

10 20 30 40 50 60 70 80 90 100

NUMBER OF PROCESSORS

FIGURE 4.2

BANDWIDTH REQUIREMENTS OF DIRECT



24

represents a scheduling anomaly which is also reflected in Finire

3.1).

There are several possible technoloqies for the rino orcani-

zation which we intend to investiqate. One possible technoloiv

is that which is used in the Distributed Loop Computer Vetwork

[14]. This network employs a technique known as shift-reaister

insertion and can handle the transmission of variable ]enqth mes-

saqes. A ring bandwidth of un to 4A(MbDS can he obtained in this

fashion. Some alternatives are loops constructed usino either

fiber optic technoloqy or broadband coaxial technolooy. Fiber

optics can support bandwidths of 400 Mbps r151 anO shoul9 be

commercially available in the next 5-10 years. Rroadband coaxial

technoloay is claimed to be cqpable of i0 Mbp.

4.2. Instruction Control and Execution

When an instruction is assiqned to an IC it can be in one nI

two states. If the instruction's operands are source relations

in the database, then the instruction is ready to be executed. In

this case the MC will also send to the IC a pace table descrbinr

each operand. Otherwise, if the instruction is not enabled, the

TC will first create a paqe table for each onerand oF the

instruction and then wait for panes of the source operand(s) to

arrive from IPs beinq controlled by another IC. As panes (which

may not be full) arrive, they are comressed to form FuL1 naces

[31 and then stored in the IC's local memory or its senment o

the disk cache.

1'Jhen an IC is ready to initiate the execut-ion of an instru]c-
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tion (i.e. at least one paqe of each operand is present), the IC

first sends a control packet to the MC which requests an initial

allocation of IPs and disk cache paqe frames. If the requested

allocation cannot be fully satisfied, the MC will respond with a

list of the IPs and paqe frames which are currently available.

When another instruction has terminated, the MC will send the

remaininq requested resources to the IC.

The packet format of instruction packets sent by an IC to

one of its IPs is shown in Fioure 4.3. The destination of the

packet is controlled by the IPid field. It is important to note

that since packets are not fixed lenqth, it is possible for the

TC to send varyino size data paqes as source operands. In this

way maximal concurrency can he achieved while the bandwidth

recuirements of the communications medium are minimized.

Upon receipt the IP applies the operation code to the data

paqes contained in the packet. Tuples of the result relation are

placed by the IP in an internal buffer. The IP informs the con-

trollinq IC that it is done by sendina it a control packet (Fia-

ure 4.4). The IC can respond by either sendinc additional pack-

ets or h%/ releasina the IP. When the IP's internal buffer fills

or when the flush-when-done flaq of the instruction packet is on,

the IP sends the contents of its buffer in a result packet (Pio-

ure 4.5) to the destination IC specified in the instruction

packet. The controllina IC will turn the flush-when-done flan on

when it expects the outioinq packet to be the last one which will

he sent to the IP.

When an IP first receives an instruction packet for a join
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operation, it sets up an "inner-relation control" (IRC) vector

with one entry for each paqe of the inner relation. (Initially

this vector will have onlv one entry, but the vector will qrow as

execution of the instruction proaresses.) Nfter the IP has joined

the first paae of the outer relation with the first paqe of the

inner relation (the two operands in the packet), the IP will send

a "done" control packet to the controllina Ic. Included in this

packet will he a request for the second paqe of the inner rela-

tion. The IC responds to this request hy hroadcastino the

requested paae to all IPs which are executina the join. (An IP

can determine if a broadcast packet is meant for it hy examining

the Ouery ID field of the packet). quhseauent reauests for the

same paoe which are received by the IC "soon" afterwards can he

ionored.

Each T which receives the broadcast packet can be in one of

several states. If the TP has already sent or is about to send a

request for the same paqe to the IC, then the TP can proceed to

join the new paae of the inner relation with its current pane o:

the outer and update its IPC vector appropriately. If the IP

does not have room in its local memory for the broadcast pane, it

will iqnore the packet. However, the followinq scenario may

occur. Because its local buffer is full, an I innorps pane i of

the inner relation. 'hen broadcast pane i+l is received (before

it or paae i has been solicited hv the TP), he TP will read pane

i+l and use it as an operand pane. This situation can continue

uintil a packet is received which indicatps that 9-his is the last

pame of the inner relation. At this point each TP will eyamine



28

its IRC vector and then proceed to request those paces which it

missed. WAhen the IP has joined the current pace of the outer

relation with all the paqes of the inner relation, it will first

zero its IRC vector and then signal the IC that it is ready for

another page of the outer relation which has not yet been distri-

buted to an IP. In this way message traffic on the outer rino

is minimized and yet correct operation of the join can he

qua ranteed.

5. Conclusions and Future Research

In this paper we have presented the use of data-flow machine

techniques for the processinq of relational Plqehra queries. The

performance of two multiprocessor Join algorithms was analyzed

and it was shown that the nested-loops alaorithm is aenerallv

superior to the sort-merae alciorithm. 'le have also discusseO

alternative operand qranularities for data-flow database machines

and have demonstrated that page-level aranularity is the best

choice for optimum system performance. A preliminary Oesirin for

a data-flow database machine which utilizes pace-level oranular-

ity and supports distributed control of instruction execution has

F been described.

There are several features of our proposed desion with which

we are not completely satisfied and which warrant further inves-

tioation. in particular, we feel that it should be possible to

route some of the data paqes which are produced by IPs directly

from one IP to another without first sendino the Paae to an 1C.

Thus, instruction execution control. would he distrihuted further.
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If such an approach could he successfully desiqned and imple-

mented message traffic on the outer ring could he further

reduced. There appears, however, to be a tradeoff between

decreased message traffic and increased IP complexity which needs

further examination before the correct approach can be chosen.

Another area of research which we intend to pursue is con-

currency control mechanisms for data-flow database machines. In

our current design, the MC is responsible for all concurrency

control. We intend to investigate a distributed mechanism in

which the ICs and not the MC would be responsible for concurrency

control. One can view a data-flow database machine (such as

described in Section 4.0) as a "local" distributed database sys-

tem in which the ICs correspond to distributed centers of query

execution and control. As a first step we intend to examine the

mechanisms which have been proposed for concurrency control in

distributed database systems to see if they are applicable. We

intend to evaluate the performance of each of these algorithms to

determine how each performs in a "local" environment. Then hased

on our findinqs we will either adopt one of the existina aloo-

rithms or attempt to develop a new aloorithm which takes advan-

taqe of the "local" nature of the ICs.

While the rino architecture we have proposed seems to

satisfy the orqanizational requirements for data-flow database

machines, the reauirement for a hiqh bandwidth communications

medium may not be realistic for a larae number of rPs. The other

MIMD database machines which have been proposed have depended on

processor-memory interconnections in complexity of O(n ) [1,21 to
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O(nloqn) [1,S-17]. We feel that the O(n) nature of the rinq

orqanization is the best if hiqh (100 Mbit) bandwidth rinqs

become available. However, we intend to investioate other pro-

cessor interconnection strateqies for data-flow database machines

which satisfy the reauirements specified in Section 4.0 yet which

can be constructed from existina technologies.
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